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Stereo  correspondence  is hard because diflerent image features  can look alike. W e  propose  a 

measure  for  the  ambiguity of image  points  that  allows  matching  distinctive  points  first  and 

breaks down  the  matching  task  into  smaller  and  separate  subproblems.  Experiments  with 

an algorithm based on  this  measure  demonstrate  the  ensuing  eficiency and  low likelihood of 

incorrect  matches. 
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1 Introduction 

The  crux of stereo  matching is  image  ambiguity. If two features’.in  the  same  image look 

alike,  it  may  be  impossible to  find their  corresponding  features’ in the  other  image  based ‘ 

only on local appearance,  and global reasoning  must intervene.  For instance, the columns 

of the colonnade in Canaletto’s  palazzo  ducale  in figure 2 are very similar to one  another, 

and knowing which column  in  one  image matches which.’column in the  other  may involve 
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counting  columns  from  some  distinctive reference point. 

Most existing  stereo  algorithms discover ambiguity post  facto. They first generate  match 

candidates based on local similarity  measures,  and label  features  with  multiple  matches  as 

ambiguous. A second stage  then  attempts  to resolve ambiguous cases by imposing global 

consistency constraints.  This  generate-and-test  approach works hard  to  produce a large 

number of match  candidates,  and  then works harder  to  eliminate  the  bad ones. 

In  contrast, we propose a measure of image distinctiveness that allows sorting  image 

points in order of increasing ambiguity  before  matching begins. If distinctive, that  is, low- 

ambiguity  points  are  matched  first, the correspondence  problem is broken down into a num- 

ber of smaller  ones. If the left-to-right ordering of features is preserved  across images, a 

safe  assumption in  most  cases, then each subproblem is restricted to pairs of corresponding 

epipolar line  segments that lie between  two of the given matches. Thus,  the “safe” matches 

constrain  the less safe  ones, resulting in both fewer incorrect  matches and a greaber efficiency. 

It is important  to distinguish  distinctiveness (or its  opposite,  ambiguity)  from  what is 

called “interest” in the  computer vision literature [2, 61. Interest  operators  are  local,  and 

detect image points  that have sufficient texture for matching. Very interesting  points  can  be 

highly  ambiguous, like the edges in a periodic  pattern.  On  the converse, distinctive  points 

are not necessarily rich in texture.  Interesting  points  ensure good match accuracy; distinctive 

points  ensure low probability of mismatch. If the correspondence  problem is formalized in 

terms of the minimization of a cost function,  inaccuracy is equivalent to poor  localization of 
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the global  minimum;  mismatch is equivalent to choosing a wrong local minimum.  Perhaps 

due  to  the difficulty of finding an  adequate  model,  the .analysis . .  of mismatches  has received 

much less attention in the  literature  than  the analysis of match"accuracy. 
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Loosely speaking, the  ambiguity of a point is characte&zed I by  tGe difference in appearance 

from  the most  similar  other  point  on the  same  epipolar' line: Thus,  an  image  location 

is  ambiguous if there is some other  location that looks'.similar to  it. While  ambiguity is 

measured in a single  image, it is used for matching ~. stereo  pairs. It therefore  stands t o  

reason that  the  similarity  metric used  for measuring  ambiguity  be the  same as the  one 
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used  for stereo  matching.  In  other words,  different similarity  metrics used for stereo  imply 

different  measures of ambiguity. We give a precise  definition of distinctiveness, the opposite 

of ambiguity,  in  section 2. 

Distinctiveness  maps  may  be used t o  speed  up  stereo  algorithms, by means of a hierar- 

chical scheme. If the most  distinctive  points in an  epipolar line are  matched  first,  then  the 

segments of epipolar  line  lying between two consecutive  distinctive points may be  matched 

independentely by virtue of the  ordering  principle [3]. A  fast  divide-and-conquer  strategy 

based on such observation is presented  in  section 3. Section 4 has the conclusions. 

2 Distinctiveness maps 

The yellow and blue  plumage of a toucan  produces a visually  distinctive  blotch  amidst  the 

green  of  a  jungle.  In a stereo image pair of this  jungle scene, the toucan is trivial to match. If 

we consider an  epipolar  line  cutting  through  the  bird's  plumage,  determining  correspondences 

for the remaining  pixels is probably  hard,  since  everything is green and most leaves look the 

same.  This  example shows why some  image  locations  are easy to  match, while others  are 

not.  Distinctive  features  are  unique,  and look like nothing else in the  picture,  or at least 

along  the  epipolar line.  Ambiguous points,  on  the  other  hand,  are  similar  to  many  others. 
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Their local appearance is inadequate  for  determining  stereo I .  correspondence. 
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At the  same  time,  the  distinctive  features  help  matching  the  ambiguous  ones  as well. In 
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fact, foliage that is on  the left of the  toucan in the left image  matches foliage that is on the 

left of the bird  also  in the right  image. This is the.orde& c~ib@faih' [3] ,  which is violated 
. . . ,-.. ! ,:,  . . .  ., l > ' . . _ . '  . 

only in rare cases like with a thin  pole in the foregrounil;well:away from the  background. 

Barring  these  extreme cases, the  ordering  constraint,  can  be'used, to leverage distinctive 

features in order to  facilitate  the  establishment of c,orrespondence for the more  ambiguous 

image  locations.  In  fact,  before  matching. the  toucan, every pixel in  the left epipolar  line 

can in  principle be a match  candidate for every pixel in the right  one.  After  matching the 

toucan, on the  other  hand,  the  correspondence  problem is broken into  two  smaller ones: one 
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is for the two  segments of epipolar  line to  the left of the  toucan,  the  other is for the two 

segments to  its right.  Candidate  matches that  take pixels from both sides of the  toucan  are 

disallowed.  In short, if distinctive  features  can  be  matched  first,  divide-and-conquer  can  be 

applied to stereo  matching. 

The distinctiveness of a point is not  an  absolute  measure,  but is subordinate  to  the 

chosen matching  strategy. Section 2.1 defines the basic  parameters of interest of stereo 

algorithms. Section 2.2 introduces  our  definition of distinctiveness,  and section 2.3 presents 

some examples of distinctiveness  maps for the case of correlation-based  matching. 

2.1 Basic parameters 

Stereo  algorithms can be  roughly  characterized by the following parameters: 

1. The local descriptors, which are vectors that encode the local profile of the image.  More 

precisely, the local descriptor of the image at point x is a vectorial transformation of 

the brightness  within  an  analysis window Wa centered in x. Ideally, descriptors  are 

invariant  with  respect to  the geometric  transformations of interest. 
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2. The perceptual  metric, which measures  the  similarity of image  points by the  distance 
_ .  

. .  
of  the  corresponding  descriptors. 
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. .  ' 

.. . 

3. The search window W s ,  which determines  the  largest  disparity  that  can  be  measured 

by the  algorithm. A large  baseline  requires a large:search'wiridow, which implies  high 

computational  cost  and  high  probability of mismatches. '_  :: 
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For  example,  SSD-based  correlation  algorithms  measure the euclidean  distance  between 

local  descriptors  formed by the values of the pixels  within the  analysis window. Filter-based 

algorithms [5][4][8] generalize the  correlation  idea,  and represent  local  brightness profiles by 

means of vectors  formed by the  output of a bank of filters.  Kass [5] and  Jones  and Malik [4] 

use banks of multiscale/multioriented filters,  and use LZ or L1 perceptual  metric.  Tomasi 

and Manduchi 181 measure the local  Taylor  expansion of the brightness  and use an  ad-hoc 

perceptual  metric for the fast  and  robust  computation of nearest  neighbors  in the descriptors' 

space. 

2.2 Distinctiveness: a formal definition 

Two  points in two  different  images are  similar when their  perceptual  distance is small. The 

same  concept  applies to two  points of the  same  image,  suggesting  the following definition of 

distinctiveness: 

Definition 1. (distinctiveness in the  discrete  case) The distinctiveness of an 

image  point x is equal to  its  perceptual  distance  to  the most similar  other  point 

in the search window. 

We may  also define the ambiguity of a point as  the inverse of its  distinctiveness. If within 

the search window there is another  point which looks exactly like z, then z is infinitely 

ambiguous: the risk of mismatch  for  such a point is very high. 
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This  simple definition of distinctiveness  must  be modified’for. the  continuous  case, where 

the notion of “most  similar  other  point”  may  not  make‘sense. Let & ( s )  be  the  perceptual 

distance between points x and x + s. Consider the  set. of maximally  connected  regions of 

W s  formed by the  points where the  gradient of d,(s) ‘%anishes.+We .pick any  one  point  from 

each such regions,  excluding the one  containing the origin, to form the  set of “characteristic 
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local extrema” M .  

. .  

Definition 2. (distinctiveness in the continuous case) The  distinctiveness of the 

image point x is defined as 

minsEM d,(s) if M is not  empty 
D(x)  = 

l o  if M is empty 

Note  that even points in segments of constant  brightness (such as  stripes  or  blobs)  may  be 

distinctive,  as  long  as  they  are  structurally different  from the background.  Such  points  are 

not considered interesting by standard local feature  operators; in fact,  they  can  be precious 

“anchor  points” for reliable (albeit  not necessarily accurate) matches. 

2.3 An example: SSD-based matching 

SSD-based matching  techniques  are very popular for stereo  matching. The surface d,(s), 

which measures the  perceptual difference between z and  the  points  within  the  search window, 

corresponds to  the auto-SSD  function 

SSD,(s) = ( Z ( X  + z) - l(x + z + s ) ) 2  
1 E tv, 

The  auto-SSD profile around a point x contains precious  information  about  the  expected 

goodness of match. For example,  its  flatness in  correspondence  of the origin  measures the 

expected  match accuracy. On  the  other  side,  the risk of mismatch  can  be  estimated from 
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Figure 1: (a) Original  image. (b) SSD-based  distinctiveness  map  (Wa=5x5 pixels; W8=21x21 pixels). 

the distinctiveness of IC,  which is  equal to  the height of the smallest  minimum of SSD,(s) 

beside the one in the origin. 

We have applied the SSD-based  distinctiveness  operator to  the image of figure l(a) with 

an analysis window W, of 5x5  pixels and a search window W, of 21x21 pixels. In  this  image, 

the vertical  stripes  stand out distinctively,  while the oblique  edges  form a periodic pattern, 

more  prone to mismatch. In figure l (b )  we show the image  points  with  distinctiveness 

above  the average. The measured  distinctiveness  map  agrees  with  our  expectations:  only 

the vertical  stripes  and  the  most  outstanding  oblique  patterns  are ranked distinctive. 

As pointed  out  earlier,  our  definition of distinctiveness is subordinate  to  the choice of a 

particular  matching  system. Most stereo  algorithms  match  epipolar lines, which is equivalent 

to constraining  the  search window height to  just one  pixel. We have computed  the  distinc- 

tiveness  map of the  Canaletto  image in figure 2(a) using  one-dimensional  search  windows. 

Figures  2 (b), (c) and  (d) show the  points  with  distinctiveness above the average for search 

windows of 1x21,  1x41 and  1x61 pixels  respectively (an analysis window of 7x7 pixel has 

been used in all three  experiments.) 

It is interesting to analyze  the  results in correspondence of the periodic  patterns  formed 

to  the columnade. Using the  1x21  search window, the  columns in the  upper row are  ranked 
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Figure 2: (a) Original  image. (b),(c),(d)  SSD-based distinctiveness map  (Wa=7x7 pixels; (b) W8=1x21 

pixels; (c) Ws=1x41 pixels; (d) Ws=1x61 pixels). 

distinctive. However, since their  repetition  period is smaller than 41 pixels, they become 

ambiguous when the larger windows are used. A stereo  algorithm  with a search window of 41 

pixels  or more would be  prone to  mismatch  these  points.  When  the  largest  search window is 

used,  also the wider  columns in the lower row are ranked  ambiguous. However, the flagpole 

on the left, as well as the window high  above,  are ranked  distinctive  in all three cases. 

3 An application:  hierarchical  stereo 

The selection of image  features is at the basis of a number of classical stereo  algorithms 

[1],[7]. After  feature  extraction,  matches  are  computed in a  sequence of two  steps. 

First, each feature point in one  image of the stereo  pair is assigned a number of “candidate 

matches”  in the  other image. The selection  is done according to criteria of spatial  proximity 

and  perceptual closeness. In other words, the  candidate  matches  are  the most  similar  features 

that  lie  inside the search window in the  other image. 
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Second, the chain of correspondences which maximizes a global quality  measure while 
. *  

satisfying the  criteria of uniqueness, ordering  and  smoothness,’ is  selected  from the pool of 

candidates.  The  global  quality  measure is a functi-on . I  ‘:of the, perceptual  distances of the 

candidate  matches in the chain. This “disambiguation’,i task can  be  computationally very 

expensive, even when resorting to  dynamic programmirig’implementations [1][8]. 
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In  order to reduce the  computational  load of the  proves, we propose a hierarchical  scheme 

that  matches a set of distinctive  points first. Once  these highly distinctive  points  have  been 

matched,  the process is divided  into a number of smaller  subprocesses,  by virtue to the 

ordering  constraint.  In  other words, given any  two consecutive  distinctive points zi,zi+l, 

and  their  corresponding  matches ?J, pi+l found  in the  other image, the  points in the segment 

[xi, zi+~] are  matched  only  with  points in the segment [gi,  gi+I] .  It  can  be easily  proved that 

this  divide-and-conquer  strategy effectively reduces the overall computational  load. 

- .  

Our hierarchical  scheme  can be implemented on top of almost  any  existing  stereo  algo- 

rithm. For our  experiments we have adopted  the  algorithm of Tomasi and  Manduchi [8], 

which uses the  intrinsic  curve  representation of scanlines t o  determine  candidate  matches. 

An  intrinsic  curve is the  path formed by the  descriptor as we move along the scanline,  and 

therefore is invariant to  image  shift.  Finding a candidate  match  then becomes a nearest 

neighborhood  problem  in the descriptors’  space, which can  be solved efficientely by using a 

suitable  representation of the curves. For the  same  reason, finding the distinctiveness of a 

point (which corresponds to  finding the  ‘hearest neighbors” on the  same  curve) is a very 

fast  operation. 

We have tested the hierarchical stereo  algorithm on two stereo  pairs, the  ‘Clorox”  pair 

from  Stanford  University (figure 3) and  the  “Castle”  pair from CRIU (figure 4) (the images 

have been preciously  subsampled by two along  the  horizontal  and  vertical  axes.)  The  stereo 

pair  “Clorox~’ is characterized by a very articulated  depth field, with  occlusions at   the borders 

of the objects. The  pair  “Castle” shows patches  with periodically  repeated patterns. 
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The  computed  disparity  maps  are  represented  with pseudocolors’. The  upper  part of 

each  image  in the figures  (above the  epipolar  scanline  ‘drawn in  black)  represents the left 

image in the  stereo  pair,  the lower part is the  right’image. NO postprocessing  has  been 
. , .  

, ’ _  

performed  on the  computed  disparities.  The  algorithm uses an  adaptive  resampling  strategy 

that  concentrates  matches where the signal  “business’”is high [8]. This is the  main  reason 

for  the  sparseness of the  computed  disparity values, another reason  being that a match is 

accepted only when its  quality is  above a certain  threshold. 

Beside  being computationally efficient, the least-ambiguous-first  technique  reduces the 

risk of mismatches. This is shown  here by  way of examples in correspondence of the image 

patches highlighted  in the figures. The original  full-rate  sampling  period  has been retained 

in these figures. In the case of figure 3, the periodic  pattern  corresponding to  the keys of 

the calculator is a potential occasion for mismatch.  This  appears clearly by plotting  the 

intensity in the two  scanlines, as in the first plot of the figure (the solid line corresponds to  

the left  image, the  dashed line to  the right  image). The second  plot shows the normalized 

distinctiveness of the  points in the left scanline. It is rather difficult to  correctly  match by 

hand  the  peaks of the two  signals,  unless  one uses the  dark  calculator’s edge as a reference 

point. As expected,  this is where the distinctiveness  has  its  maximum. 

For  the piece of scanline  shown in the figure, we first selected and  matched five highly 

distinctive  features,  obtaining the correct  disparity  estimates  depicted with dashed  lines 

in the third  plot.  Then,  the  scanline  segments between the correspondences  found in this 

first  stage have  been matched  independently,  producing the  disparity values depicted  with 

solid lines in the plot. No mismatch  occurred  with  this  procedure. As a Counterexample, 

we repeated  the  experiment  and selected five highly  ambiguous  features in the first stage; 

the results are shown in the  fourth  plot. Because of ambiguity,  such  features  have  been 

‘A somewhat less readable  black-and-white  image will be substituted if color is not allowed in the 

proceedings. 
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Figure 3: Matching  experiments  with the  test  stereo pair  “Clorox”. The images have been previously 

subsampled by two along the horizontal and vertical  axes. The left image is shown above the  dark scanline, 

the right image is shown below. The  computed  disparity field is  represented  with pseudocolors. The first 

plot shows the full-rate  intensity profile in the scanline  corresponding to  the highlighted area (solid line: left 

image,  dashed line: right  image.) The second plot shows the normalized distinctiveness  function  relative to 

the scanline in the left image. The  third  plot shows the  disparity  estimates  obtained  with  the hierarchical 

stereo  algorithm;  the values computed in the first stage  are depicted  with  dashed  line. The  fourth plot shows 

the results in the case the most  ambiguous  points are matched  first. 
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Figure 4: Matching  experiments  with the  test  stereo pair "Castle" (see caption of figure 3.) 
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mismatched,  constraining  the  subsequent  stage to  detect wrong  matches. 

A similar  study  case is shown in figure 4 for the “Castle” couple. Here, the  textured 

pattern  on  the houses’  facades  is interrupted by a flat white  area,  corresponding to the 

houses’ roofs. The distinctiveness map reveals  such a region, and  the  match is best  performed 

starting from these  more  distinctive  points. 

4 Conclusions 

We have shown in this  paper  that  distinctiveness,  and  not  interest, is the  appropriate  criterion 

for feature selection in  stereo  matching.  Distinctiveness is  global, and  subsumes  the  local 

notion of interest.  Distinctive  points are conceptually  similar to outliers  in a statistical 

model;  they  are the  features  that  stand  out  most clearly in the image, and  represent  reliable 

“anchor  points” for matching. Based  on this  intuition, we have proposed an hierarchical 

stereo  algorithms  that  matches  distinctive  points first. This early commitment  strategy  can 

reduce  the  computational load effectively, at  the  same  time minimizing the  probability of 

mismatches. 
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